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ABSTRACT

Final Report: Sparsity Aware Adaptive Radar Sensor Imaging in Complex Scattering Environments
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In this reporting period, we develop new radar imaging, estimation, and waveform encoding techniques that exploit prior knowledge of the 
target and its environment to improve system performance through sensing, learning, and exploitation. Our research accomplishment is three 
fold. First, we develop a variational Bayesian based framework to address the problem of multi-parameter estimation under compound 
Gaussian clutter in the context of cognitive radar. Results demonstrate an accelerated convergence of the proposed sequential estimation 
method with an improved asymptotic Cramer Rao bound compared with the conventional expectation-maximization (EM) method and the 
classic Bayesian approach, especially under small sample size. Second, we develop estimation method for range and Doppler using weighted 
OFDM waveforms for radar targets. We demonstrates that the proposed weighted OFDM modulation scheme results in a lower Cramer-Rao 
bounds for delay estimation compared with the classic constant-envelope OFDM modulation while meeting the requirement on the peak to 
average power ratio. Third, we study impact of waveform encoding on nonlinear electromagnetic tomographic imaging algorithms using 
multiple simultaneous excitation sources. By numerical simulations, we show that the proposed iterative image reconstruction algorithm 
using coded multiple source excitation achieves faster convergence and better quality images than the conventional single source excitation 
imaging.
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Radar imaging and parameter estimation can be modeled as an inverse problem: y = R(f) + w, i.e., from noisy measurement 
vector y to reconstruct or estimate the target parameter vector f, which could be the spatial reflectivity coefficient vector or other 
target properties. The operator R (linear or nonlinear) depends on many factors such as the waveform transmission strategy, 
the data collection geometry, the medium property, and the underlying wave propagation models. A fundamental question that 
this project aims to address is: how to explore novel waveform transmission, modulation, and statistical computing techniques 
to achieve superior imaging and parameter estimation.

The main accomplishments of the project during this reporting period are (1) the development of multi-parameter estimation 
methods for cognitive radar under compound Gaussian clutter using variational Bayesian inference; 2) the development of 
range and Doppler estimation method using weighted OFDM modulation, and 3) the development of novel microwave nonlinear 
image reconstruction algorithm using waveform encoding schemes. A summary of the accomplishments is provided below. 
Detailed technical descriptions are provided in the attached publications and manuscripts.  

Accomplishment 1: Development of Multi-Parameter Estimation Method for Cognitive Radar Under Compound Gaussian Clutter 
Using Variational Bayesian Inference

Cognitive radar has been proposed as a fully adaptive radar transmission and reception system [1]. In cognitive radar, both the 
transmitter and the receiver parameters are estimated and updated by learning from the unknown environment, forming a belief 
on what is learned, and propagating this belief by Bayesian inference. From the parameter estimation perspective, the Bayesian 
approach enables inclusion of prior information (knowledge) of radar target and clutter by estimating the posterior density of the 
unknown parameters. The estimation is optimal in the sense of minimizing the Bayesian mean squared error (MSE). Typically, 
the full joint probability density function (pdf) of all the parameters of interest including the nuisance parameters is considered. 
However, in the case of high-dimensional multi-variate integration of Bayesian posterior density, the calculation of the posterior 
pdf and its marginal can be computationally prohibitive and tractable analytical solutions are often not available. Furthermore, 
the estimation accuracy is directly related to the number of data samples in the Bayesian estimator. However, in many radar 
applications, the number of available data samples is limited. These computational challenges and limitations must be 
addressed to develop next generation cognitive radar.

In this work, we developed a variational Bayesian (VB) based method for parameter estimation. Variational Bayesian aims to 
minimize free energy [2, 3], which is equivalent to minimizing the Kullback-Liebler divergence between the true posterior density 
and an approximation density of the parameters to be estimated. As a result of this functional optimization for density 
estimation, the marginal VB posterior density has an explicit functional structure, thus leading to closed form solutions [4]. In this 
work, we focus on multiple parameter estimation of target under compound Gaussian clutter in the context of cognitive radar as 
an extension of our prior work on single parameter estimation [2]. The compound Gaussian clutter model is used in high-
resolution and low-grazing-angle radar to characterize random and non-stationary sea clutter. The Bayesian estimator must 
consider a multi-parameter estimation problem by which the parameters in the compound-Gaussian model, the radar target 
response, as well as other nuisance parameters are estimated. We compare the performance of the proposed VB method with 
the expectation-maximization (EM) algorithm. In the EM method, expectations of sufficient statistics are computed with respect 
to the posterior density of hidden variables and then used to iteratively estimate the unknown parameters by the maximum 
likelihood principle. We show that our proposed variational algorithms outperform the EM method particularly when estimating 
parameters that follow non-Gaussian nonlinear models in Bayesian inference. Hence, the proposed variational algorithms 
provide appealing computational advantages for cognitive radar. The results have been presented at the IEEE Conference on 
Acoustics, Speech, and Signal Processing in April 2015 (see Ref. [5]). A more detailed discussion of the VB algorithm has been 
included in a journal version of the paper (see Ref. [6]). 


Accomplishment 2: Development of range and Doppler estimation using weighted OFDM modulation for radar targets. 

Estimation of range and velocity of targets is an important problem in radar applications. Orthogonal frequency division 
multiplexing (OFDM) offers robust system performance in rich multipath fading environment [7].  Challenges with range and 
velocity estimation of radar targets are the need for high range and Doppler resolutions and resolving phase wrapping. A high 
range resolution requires a high signal bandwidth while a high Doppler resolution requires long pulse repetition intervals. For 
OFDM signals, the range resolution depends on the sub-carrier spacing. The resolution improves as the spacing increases. 
However, since the sub-carrier spacing and the pulse repetition interval are inversely related, there exist trade-offs for achieving 
high resolutions in both range and Doppler. Next, for fast moving targets such as missiles and airplanes, phase wrapping may 
appear due to the  2 pi modulo folding, i.e., the actual Doppler frequency is likely to be greater than the corresponding sampling 
frequency. As a result, discrete Fourier transform (DFT) based sinusoidal estimation methods can only extract the remainder 
after 2 pi modulo folding. The integer multiple of the sampling frequency that is lost due to phase wrapping is known as the 
folding error. The time delay estimation corresponding to the range is also subject to a similar phase wrapping problem. 
Furthermore, phase based parameter estimation methods are generally sensitive to phase noise. Hence, for the OFDM 
signaling scheme, estimation method that resolves both the remainder and the folding error for range and velocity is needed.




In this work, we extend our prior work on radar OFDM modulation [8], [9] and addresses the problem of estimation of range and 
velocity of a radar target and OFDM waveform design. The contribution of our work is threefold. First, we propose a two stage 
estimation method to estimate the fractional components and the folding integers of range and velocity, respectively, using 
OFDM waveforms. In the first stage, we employ the maximum likelihood approach to estimating the fractional components of 
the target parameters. In the second stage, the robust Chinese Remainder theorem is utilized to extract folding integers in 
parameter estimation. For this purpose we present a design of variable frequency step in the OFDM signaling for facilitating 
robust phase unwrapping. Second, we derive the Cramer-Rao lower bounds for the maximum likelihood estimator for range and 
Doppler and the total error variance for the developed two-stage estimator. Third, the weights of the OFDM symbols are 
designed by optimizing the error bound of the estimator subject to the constraints on the peak to average power ratio (PARP) 
and the total transmission energy. Numerical simulations show that the weighted OFDM scheme improves the Cramer-Rao 
bound on the range estimation accuracy while controlling the maximum level of PAPR. Hence, the weighted OFDM modulation 
method provides a flexible modulation mechanism for radar with an improved range estimation accuracy. A provisional patent 
on this technology has been filed to the US Patent and Trademark Office [10].


Accomplishment 3: Waveform Encoding for Nonlinear Electromagnetic Tomographic Imaging 
 
Electromagnetic (EM) tomographic imaging is an inverse scattering problem which has a wide range of applications in medical 
imaging, geophysical exploration, nondestructive testing, and target identifications. In EM tomographic imaging, source 
antennas transmit EM signals into a medium under test and receive scattering signals. Based on the underlying Maxwell’s 
equations, inversion methods are employed to reconstruct a spatial distribution of material parameters such as the dielectric 
permittivity and/or magnetic permeability of the target and the surrounding medium, thus turning recorded scattering data into 
images.  

The imaging problem is formulated mathematically as a nonlinear optimization problem that seeks to minimize a misfit function 
between the measured sensor data and a pre-determined model conditioned on parameters which are to be reconstructed. An 
iterative gradient-descent algorithm is developed to solve the inverse operator (also called the adjoint operator) problem. What it 
means that the image (i.e., the spatial distribution of the material property values) to be reconstructed is to be updated 
iteratively until a stopping criteria is reached. We call this method the propagation and backpropagation (PBP) method. To be 
more specific, the propagation step is to calculate a predicted value of the wave field data from a forward model, while the 
backpropagation step is to update the image value through the use of adjoint method. For iterative algorithms, slow 
convergence and high computational complexity are the limiting factors for real-time applications. 

In this work, we will address this issue by means of dimensionality reduction through multiple source waveform encoding. 
Typical full wave tomographic imaging operates in a single-input multiple-output (SIMO) configuration. An image is 
reconstructed from measured data in response to a single excitation antenna source. The reconstruction process continues till 
all the sources are excited. For large-scale imaging such as seismic exploration, the number of EM sources is very large. Not 
only the computational cost is high, the operational expenditures of each data collection process is also significant. In this case, 
multiple source excitation becomes appealing. For example, in seismic imaging, multiple sources are excited simultaneously to 
form a so-called supershot to probe the imaging field [11], which means the imaging configuration becomes multiple-input 
multiple-output (MIMO). The recorded data are processed to form an image. The image is updated when new measurement 
data is available. This procedure is repeated until the image converges or a predetermined stopping criterion is met. However, 
multiple wave simultaneous excitation induces cross-talk noise due to wave interference, which, if not treated, will cause image 
artifacts. Therefore, signal processing techniques such as waveform encoding are needed to mitigate cross-talk noise in the 
image in order to achieve high quality imaging while reducing the computational complexity. The contribution of our work is 
threefold. First, we develop three different waveform encoding techniques, i.e., random phase encoding, waveform delay 
encoding, and uniform weight encoding for the full-wave EM imaging problem. We show that the random phase encoding 
method results in constant-envelop waveforms and produces the best performance in terms of convergence. Second, this paper 
extends our early work on microwave imaging in a SIMO configuration [12]. We show that using simultaneous sources made of 
superposition of encoded sources is able to accelerate iterative algorithms for electromagnetic full-wave inversion, thus 
demonstrating the effectiveness of waveform encoding, a common signal processing technique, to improve computational 
efficiency of classic nonlinear inverse problems. Third, although waveform encoding techniques have been studied for 
acoustical wave imaging (see our early work on MIMO ultrasonic imaging [13], [14]), there is still a lack of research for EM full-
wave imaging in applications where the use of EM wave energy is critical. In this work, we develop iterative algorithms that 
solve time domain Maxwell’s equations with coupled electric fields and magnetic fields using waveform encoded excitations and 
demonstrate faster convergence compared with our prior SIMO imaging algorithm in [12]. The results have been submitted to 
the 2015 IEEE Global Conference on Signal & Information Processing (see Ref. [15])
 

In summary, during this project period, we have addressed successfully the overarching technical problem of the project in 
three aspects, i.e., multi-parameter estimation in cognitive radar, OFDM modulation design for range and Doppler estimation, 
and waveform encoding for microwave imaging. Our research has led to two top-tier IEEE journal publications (see Ref. [16], 



[17]), one peer-reviewed primary conference publication (see Ref. [5]), one conference submission (see Ref. [15]), and three 
other journal submissions (see Ref. [6], [18], [19]). A provisional patent is also filed to the US Patent and Trademark Office in 
May 2015 (see Ref. [10]).  
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Abstract

Radar imaging and parameter estimation can be modeled as an inverse problem: y = R · f+w, i.e.,
from noisy measurement vector y to reconstruct or estimate the target parameter vector f , which
could be the spatial reflectivity coefficient vector or other target properties. The operator R (linear
or nonlinear) depends on many factors such as the waveform transmission strategy, the data collec-
tion geometry, the medium property, and the underlying wave propagation models. A fundamental
question that this project aims to address is: how to explore novel waveform transmission, modula-
tion, a priori knowledge of target, and statistical computing techniques to achieve superior imaging
and parameter estimation.

The main accomplishments of the project during this reporting period are: (1) The develop-
ment of multi-parameter estimation methods for cognitive radar under compound Gaussian clutter
using variational Bayesian inference; 2) The development of range and Doppler estimation method
using weighted OFDM modulation; and 3) The development of novel microwave nonlinear image
reconstruction algorithm using waveform encoding schemes.



Contents

1 Multi-Parameter Estimation by Variational Bayesian 2
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Radar signal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Problem of parameter estimation . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Variational Bayesian Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.1 Background of variational Bayesian inference . . . . . . . . . . . . . . . . 4
1.3.2 Variational Bayesian estimator . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Range and Doppler Estimation by Weighted OFDM Modulation 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Signal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Minimum Nonlinear Least-Squares Estimator . . . . . . . . . . . . . . . . . . . . 12
2.4 Cramer-Rao Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Weighted OFDM Symbol Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Waveform Encoding for Nonlinear Electromagnetic Tomographic Imaging 18
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 MIMO Imaging Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 2D EM tomographic imaging problem . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Inversion algorithm by adjoint fields . . . . . . . . . . . . . . . . . . . . . 21

3.3 Waveform Encoding in EM Imaging . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.1 Waveform encoding design . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Impact of excitation sources . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Conclusions and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1



Chapter 1

Multi-Parameter Estimation by
Variational Bayesian

1.1 Introduction

Cognitive radar has been proposed as a fully adaptive radar transmission and reception system
in [Haykin, 2006]. In cognitive radar, both the transmitter and the receiver parameters are esti-
mated and updated by learning from the unknown environment, forming a belief on what is learned,
and propagating this belief by Bayesian inference. From the parameter estimation perspective, the
Bayesian approach enables inclusion of prior information (knowledge) of radar target and clutter
by estimating the posterior density of the unknown parameters. The estimation is optimal in the
sense of minimizing the Bayesian mean squared error (MSE). Typically, the full joint probability
density function (pdf) of all the parameters of interest including the nuisance parameters is con-
sidered. However, in the case of high-dimensional multi-variate integration of Bayesian posterior
density, the calculation of the posterior pdf and its marginal can be computationally prohibitive
and tractable analytical solutions are often not available. Furthermore, the estimation accuracy is
directly related to the number of data samples in the Bayesian estimator. However, in many radar
applications, the number of available data samples is limited. These computational challenges and
limitations must be addressed to develop cognitive radar.

In [Turlapaty and Jin, 2013], we proposed a variational Bayesian (VB) based method for param-
eter estimation and waveform design where a single parameter estimation problem is considered.
Variational Bayesian aims to minimize free energy (FE) [Friston, 2010, Turlapaty and Jin, 2013],
which is equivalent to minimizing the Kullback-Liebler divergence between the true density and
an approximation density. As a result of this functional optimization for density estimation, the
marginal VB posterior density has an explicit functional structure, thus leading to closed form so-
lutions [Smidl and Quinn, 2008]. This work extends our prior work in [Turlapaty and Jin, 2013] to
multiple parameter estimation in the context of cognitive radar. In adaptive radar detection, estimat-
ing the clutter covariance matrix is a very important task since the detection performance depends di-
rectly on the accuracy of the estimate. For example, in high-resolution and low-grazing-angle radar,
only a small sea surface area is illuminated by a narrow radar beam. The sea clutter due to reflection
from the small patch of sea surface is random and non-stationary [Sangston and Gerlach, 1994],
which is commonly modeled as a compound-Gaussian distribution to characterize its heavy-tailed
clutter distributions [Wright, 1968, Greco et al., 2004]. Hence, the Bayesian estimator must con-
sider a multi-parameter estimation problem by which the parameters in the compound-Gaussian
model, the radar target response, as well as other nuisance parameters are estimated. In this work,
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we compare the performance of the proposed VB method with the expectation-maximization (EM)
algorithm. In the EM method, expectations of sufficient statistics are computed with respect to the
posterior density of hidden variables and then used to iteratively estimate the unknown parame-
ters by the maximum likelihood principle [Candy, 2009, Wang et al., 2006]. We show in this work
that the variational algorithms outperform the EM method particularly when estimating parameters
that follow non-Gaussian nonlinear models in Bayesian inference. Hence, the proposed variational
algorithms provide appealing computational advantages for cognitive radar.

1.2 Problem Formulation

1.2.1 Radar signal model

The compound clutter model is a product of two random processes [Wang et al., 2006, Wright, 1968,
Greco et al., 2004],

ψt =
√
utwt (1.1)

where the speckle wt characterizing the local scattering and is modeled as a zero mean complex
Gaussian (ZMCG) process wt ∼ CN (0, σ2). The component ut is a slow changing process termed
texture that follows an inverse Gamma distribution ut ∼ Γ−1(α), where the pdf of ut is

p(ut;α) =
αα

Γ(α)
u−α−1
t exp

(
− α
ut

)
(1.2)

The model (1.1) is referred to as K-clutter [Gini et al., 2000, Sangston and Gerlach, 1994] and the
parameter α is known as the Nakagami parameter [Haykin et al., 2002]. Next, we assume the radar
transmits a waveform Φt and the electromagnetic (EM) energy hits a target with a complex ampli-
tude response x. The reflected EM energy is intercepted by the radar receiver. The radar signal
model that includes the clutter from (1.1) is given by

yt = Φtx+ ψt, t = 1, 2, · · · , N (1.3)

The conditional probabilistic model of the measurements is a complex Gaussian distribution given
by

yt|ut, x, σ2 ∼ CN (Φtx, utσ
2) (1.4)

1.2.2 Problem of parameter estimation

The complete hierarchical stochastic model, i.e., the joint probability density function of the mea-
surements, hidden variables, and the unknown parameters at time t is given by

p(yt, ut, x, σ2, α; Φt) = p(yt|ut, x, σ2; Φt)p0(x, σ
2)p(ut|α)p0(α) (1.5)

where p(yt|ut, x, σ2; Φt) is the conditional density given in (1.4). The probabilistic model of tex-
ture p(ut|a) is given by (1.2). p0(x, σ

2) and p0(α) are prior densities of (x, σ2) and α, respectively.
Initially, the unknown parameter vector is given by [x, σ2, α]. When we use a variational estimation
method, the covariance estimate depends on the current estimate of α. However, initially this mutual
dependence of estimates introduces a multiplicative error in the estimates of these two parameters.
To correct this error, we use the technique of covariance adjustment and introduce an additional pa-
rameter λ in the texture model (1.2) by redefining the covariance in terms of an adjusted covariance
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σ2a, [Wang et al., 2006], i.e., the relation between the actual covariance and the adjusted covariance
is σ2 = σ2a/λ. Hence, the adjusted texture model becomes

p(ut|α, λ) = (αλ)α/Γ(α)u−α−1
t e−α/(λut) (1.6)

The new augmented parameter vector to be estimated is

θ = [x, σ2, α, λ] (1.7)

1.3 Variational Bayesian Estimator

1.3.1 Background of variational Bayesian inference

Consider a hierarchical probabilistic model

p(Y,X,θ) = p(Y|X,θ)p(X|θ)p(θ) (1.8)

where Y are the measurements, X are hidden variables, and θ are unknown parameters. In the
exact Bayesian approach, the unknown parameters are determined by evaluating the joint posterior
density p(X,θ|Y) using the Bayes rule

p(X,θ|Y) = p(Y,X,θ)/p(Y) (1.9)

while the marginal posterior p(θ|Y) is evaluated by integrating X out from the joint posterior.
However, in practice the denominator in (1.9) is usually theoretically intractable except in some
special cases. Moreover, in the case of multiple parameters in θ even the numerical integration
is computationally expensive and time consuming [Smidl and Quinn, 2008]. To address this issue,
approximation methods are needed to determine alternative density functions. Variational Bayesian
estimation aims to find approximations q(X) and q(θ) to the marginal posterior densities of pa-
rameters that minimize the variational free energy of the approximate density and the joint pdf in
(1.8) [Beal and Ghahramani, 2003]. So the key idea is factorization of q(X,θ) into q(X)q(θ), thus
separating the densities of X and θ. The variational free energy (FE) for Y,X and θ is given
by [Turlapaty and Jin, 2013, Smidl and Quinn, 2008, Friston, 2010]

F (Y,X,θ) = −
∫

q(X)q(θ) log
p(Y,X,θ)
q(X)q(θ)

dXdθ (1.10)

The approximate density q(X) of hidden variables is determined by variational Bayesian expecta-
tion (VBE)

q(X) = argmin
q(X)

F (Y,X,θ) (1.11)

where the optimal solution to (1.11) is given by

log q(X) = ⟨log p(X|θ)⟩q(θ) + ⟨log p(Y |X,θ)⟩q(θ) + const. (1.12)

where ⟨·⟩ is an inner product. The approximate density q(θ) of the parameters is determined by
variational Bayesian minimization (VBM)

q(θ) = argmin
q(θ)

F (Y,X,θ) (1.13)

where the optimal solution to (1.13) is given by [Paisley et al., 2012, Tzikas et al., 2008]

log q(θ) = log p0(θ) + ⟨log p(Y |X,θ)⟩q(X) + const. (1.14)
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1.3.2 Variational Bayesian estimator

The new joint probability density function depends on the measurement vector Y = [y1, · · · , yN ]T ,
the vector of independent hidden variables U = [u1, · · · , uN ]T , and the adjusted parameter vector
θ, which takes the form of

p(yt, ut, x, σ2, α, λ; Φt) = p(yt|ut, x, σ2; Φt)p0(x, σ
2)p(ut|α, λ)p0(α, λ) (1.15)

The full data log-likelihood function is given by

Λ(Y,U,θ)=
∑
t

log p(yt|ut, x, σ2; Φt)+
∑
t

log p(ut|α, λ)+log p0(x, σ
2)+log p0(α, λ) (1.16)

Eqn. (1.16) involves six parameters, which is very complicated. Next, we present a variation
Bayesian approach to approximate it in the sense of minimization of the free-energy (i.e., KL diver-
gence, [Turlapaty and Jin, 2013]), so that analytically trackable closed form expressions of pdfs can
be obtained. The evaluation of (1.16) involves the expectation and minimization steps (i.e., E-step
and M-step) while using the VB approach. Due to space limitations, we will omit some details of
the mathematical derivation.

VB estimation step (VBE)

The first step in variational estimation is to determine the approximate density of the hidden vari-
able ut given the measurements yt by using the minimum free energy principle. Since the hidden
variables ut are independent across time, the approximate density of the vector U can be written
as q(U) =

∏N
t=1 q(ut). Its approximate density will be obtained by minimizing the free-energy

defined in (1.10), which can be re-written as

F (Y,U,θ)=−
⟨
Λ(Y,U,θ)

⟩
q(U)

+
⟨ N∑

t=1

log(q(ut))
⟩

q(U)

based upon (1.16). Hence, the optimization problem is given by

q(ut) = arg min
q(ut)

F (Y,U,θ) (1.17)

Following the optimal solution in (1.12), we obtain

log q(ut) = ⟨log p(ut|α, λ)⟩q(α,λ) + ⟨log p(yt|ut, x, σ2)⟩q(x,σ2) + const. (1.18)

Next, inserting the pdf (1.4) in (1.18), we have

q(ut) ∝ u
−
(
⟨α⟩q(α,λ)+1

)
−1

t e
−
[
⟨α/λ⟩q(α,λ)+⟨|yt−Φtx|2 1

σ2 ⟩q(x,σ2)

]
/ut (1.19)

which is consistent with the definition of an inverse Gamma density function Γ−1(·), leading to a
closed form q(ut) = Γ−1

(
ut; cU , dU

)
with its parameters being cU = ⟨α⟩q(α,λ) + 1 and dU =

⟨α/λ⟩q(α,λ) + ⟨|yt − Φtx|2/σ2⟩q(x,σ2).
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VB minimization step (VBM)

The optimization problem for estimating the pdf of the parameter vector θ is given by

q(x, σ2, α, λ) = arg min
q(x,σ2,α,λ)

F(Y,U,θ) (1.20)

We write the variational posterior density of the parameter vector in (1.14) as follows

log q(x, σ2a, α, λ) = log p0(α, λ) + log p0(x, σ
2
a) +

N∑
t=1

⟨
log p(yt|ut, x, σ2a; Φt)

⟩
q(ut)

+

N∑
t=1

⟨
log p(ut|α, λ)

⟩
q(ut)

+ const. (1.21)

Note that the terms for the joint pdf of (x, σ2a) are separable from the pdf of (α, λ), i.e.,

q(x, σ2a, α, λ) = q(x, σ2a) q(α, λ) (1.22)

Next, we evaluate log q(x, σ2a) and log q(α, λ) from (1.21) and (1.22) to derive approximate closed
forms. We start by writing the log-function of pdf of (x, σ2a) as

log q(x, σ2a) = log p0(x, σ
2
a) +

N∑
t=1

⟨
log 1/(πutσ

2
a)
⟩

q(ut)
(1.23)

−
N∑
t=1

⟨
|yt − Φtx|2/(utσ2a)

⟩
q(ut)

+ const.

which leads to the joint pdf q(x, σ2a), which is a complex Gaussian inverse Gamma (CGIG) distri-
bution

q(x, σ2a) ∝ p0(x, σ
2
a)(1/σ

2
a)

Ne−
∑N

t=1 |yt−Φtx|2/σ2
a⟨1/ut⟩q(ut) (1.24)

Note that the functional form is nicely preserved if the prior pdf is assumed to be p0(x, σ
2
a) ∼

CGIG(ρ, η, β, µx), which leads to an explicit single CGIG distribution expression for q(x, σ2a).
Next, we examine the logarithm of the joint pdf of (α, λ), which is given by (where C is a constant)

log q(α, λ)=log p0(α, λ)+
N∑
t=1

⟨log p(ut|α, λ)⟩q(ut)+ C (1.25)

By (1.6) and Tl ,
∑N

t=1⟨log ut⟩q(ut), Ti ,
∑N

t=1⟨1/ut⟩q(ut), we obtain the joint pdf q(α, λ) as
follows

q(α, λ) ∝ p0(α, λ)
(αλ )

Nα

(Γ(α))N
e−α(Tl+Ti/λ) (1.26)

Since this is not a known probability distribution, it can not provide closed form solutions. We
can rely on numerical means for calculation, or alternatively, we propose to induce another layer of
factorization on the joint pdf q(α, λ) as

q(α, λ) = q(α)q(λ) (1.27)
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via the optimization problem to obtain closed form expressions of q(α) and q(λ), i.e.,

arg min
q(α),q(λ)

F(Y,U, x, σ2, α, λ) (1.28)

where the new free-energy quantity is defined by

F(Y,U, x, σ2, α, λ) = −
⟨
Λ(Y,U, x, σ2a, α, λ)

⟩
q(α)q(λ)q(x,σ2)q(U)

+
⟨

q(α)q(λ)q(x, σ2)q(U)
⟩

q(α)q(λ)q(x,σ2)q(U)

As a result, we obtain the approximate inverse Gamma distribution for q(λ) = Γ−1(λ; cλ, dλ)
and the approximate Gamma distribution for q(α) = Γ(cα(0), dα(0)) by Lindley’s approxima-
tion [Lindley, 1980]. Due to space limitations, we will omit the detailed expressions of q(α) and
q(λ) in this work.

1.4 Numerical Simulations

We present estimation performance of the three estimators by numerical simulations. The three esti-
mators are: (1) VBN-PF: Variational Bayesian approach with induced factorization on q(α, λ) and
a numerical integration for evaluation of the moments of α. (2) VBL-PF: Variational Bayesian ap-
proach with induced factorization on q(α, λ) and the Lindley’s approximation for evaluation of mo-
ments of α [Lindley, 1980]. (3) PXEM: parameter expanded expectation maximization approach,
where q(ut) is updated based on Bayesian approach, while each of the unknown parameters is deter-
mined by using the maximum likelihood principle [Wang et al., 2006]. The key differences between
the EM and VB algorithms are twofold. First, in the EM method, unknown parameters are consid-
ered as deterministic values and estimated using the maximum likelihood (ML) method whereas
in the VB method the unknown parameters are modeled as random variables and the Bayesian ap-
proach is used to determine their approximate posterior densities. Second, in the EM method, each
M-step only receives the updated sufficient statistics from the E-step, where as in VB, as a result of
the Bayesian principle, the VBM step utilizes the updated priors of the randomized parameters.

The parameters of the clutter model and target model are chosen as follows: Nakagami parame-
ter α = 3, clutter power σ2a = 5 dB, the complex target response x = 1.6+1.0i, the spectral density
of the waveform is normalized |Φt| = 1, the number of observations N varies from 10 to 1000.

Figs. 1.1(a) shows that, for the parameters σ2, the variational algorithm VBL-PF outperforms
the PXEM algorithm when the number of observationsN < 200 while the VBN-PF method outper-
forms the PXEM for all values of N . For the estimation of Nakagami parameter α, the performance
of VB methods is much better than PXEM in terms of MSE, as shown in Fig. 1.1(b). This is be-
cause in the PXEM method, the ML solution is obtained by solving a nonlinear equation due to the
non-Gaussian clutter model. For the estimation of radar target response x, the three methods have
very similar performance for all values of N as depicted in Fig. 1.1(c). The explanation for the sim-
ilarity is that the unknown parameter is a linear function of the observations and follows a Gaussian
distribution. Note that ML and Bayesian algorithms usually have similar performance for Gaussian
linear models. The advantage of VB approach can be observed for non-Gaussian nonlinear models
such as the ones that involve σ2 and α. This observation is consistent with existing literature on
variational Bayesian studies [Smidl and Quinn, 2008, Tzikas et al., 2008]. Finally, The estimation
performance of the adjustment parameter λ is not discussed as it is only a nuisance parameter for
correcting the multiplicative error.
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Figure 1.1: Comparison of mean squared error (MSE) between PXEM, VBN-PF and VBL-PF. (a)
clutter noise variance σ2, (b) Nakagami parameter α, and (c) target response x.

1.5 Conclusion

We develop variational Bayesian algorithms for estimating multi-parameters of a compound Gaus-
sian clutter model and target response. The VB method yields closed form expressions for the
posterior probability density functions and results in improved estimation performance for the clut-
ter model, especially for parameters of non-Gaussian nonlinear models and when the number of
measurements is small.
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Chapter 2

Range and Doppler Estimation by
Weighted OFDM Modulation

.

2.1 Introduction

An increasing array of technologies in communications services has resulted in scarcity of the fre-
quency spectrum. Spectrum congestion becomes a growing problem, thus limiting the operational
capabilities of competing wireless systems due to mutual interference. The call for spectrum sharing
is to allow co-existence between various RF systems including Wi-Fi, cellular system, and S-band
radar that operate in the same or close frequency band while achieving normal operational perfor-
mance levels. Traditionally, fixed spectrum allocation has been used to prevent interference for
radar and communications systems that operate in close ranges. However, with the huge success in
wireless connectivity and cellular communication system, more frequency bands are allocated for
commercial applications, which makes the fixed spectrum allocation approach increasingly difficult
to implement.

One of the alternative approaches to achieve spectrum sharing is to design reconfigurable wire-
less platforms, for example, a single RF platform that can be used to realize communication and
radar functions. However, the intended radar functions are quite different than communications sys-
tems. Radar is an active sensing device that relies on transmission waveforms for target detection,
estimation, and tracking with the goal of achieving high resolution. For a communications system,
information bits transfer is accomplished by waveform modulation and demodulation. The primary
goal for communications is spectral efficiency and throughput. Hence, one of the challenges that
we face is to design modulation waveforms that can be dual-used for radar and communication.
Many different modulation schemes that are traditionally used for communications can also be uti-
lized for radar. For example, spread spectrum techniques have been used in a vehicle-to-vehicle
communication and ranging system under a single RF platform [Uchida et al., 1994]. Orthogonal
frequency division multiplexing (OFDM) or its variations [Sit et al., 2011] have also been used in
radar [Braun et al., 2010].

There are two noticeable advantages of using OFDM modulation. First, by reusing the OFDM
waveform, limited extra hardware is needed for optimizing both wireless communication and radar
detection. Second, recent research has shown that OFDM offers robustness performance against
multipath fading [Sen and Nehorai, 2011, Garmatyuk et al., 2007] in highly mobile environments
[Schmidl and Cox, 1997]. Note that constant envelope signaling with phase modulation is gener-
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ally preferred for hardware realization [Testi et al., 2013]. However, the constant envelope OFDM
waveform (CE-OFDM) has a relatively high peak to average power ratio (PAPR). The upper bound
equals to the number of subcarrier frequencies [Ochiai and Imai, 2001]. Hence, the estimation per-
formance is limited by the number of independent individual OFDM symbols.

In this work, we present a non-linear least squares approach to estimate the velocity and range of
a radar target based on a weighted OFDM (WOFMD) modulation scheme. The proposed WOFDM
method is a non-constant envelop modulation method. The weights of the WOFDM symbols are
designed by optimizing the error bound of the estimator subject to the constraints of PARP and a
total transmission energy. Numerical simulations show that the weighted OFDM scheme improves
the Cramer-Rao lower bound on the range estimation accuracy while controlling the maximum level
of PAPR. Hence, this method provides a flexible and reconfigurable realization mechanism for the
radar/comm system co-design with an improved estimation range accuracy of radar targets.

2.2 Signal Models

We consider an OFDM signaling system with N subcarriers, each modulated with a data symbol.
The time domain transmitted (complex envelop) signal in the m-th pulse (m = 0, · · · ,M − 1) can
be written as

sm(t) =

N−1∑
n=0

am,ne
j2πfnt1m(t, TPRI, Tp) (2.1)

where the m-th rectangular pulse function is defined as

1m(t, TPRI, Tp) =

{
1 mTPRI ≤ t ≤ mTPRI + Tp
0 mTPRI + Tp < t < (m+ 1)TPRI

(2.2)

and am,n denotes the complex weights transmitted over the n-th subcarrier for the m-th modulation
symbol. For a constant envelope OFDM modulation method, the following condition

N−1∑
n=0

|am,n|2 = a = const. (2.3)

is imposed. TPRI is the pulse repetition interval (PRI). Tp is the OFDM symbol duration and the
subcarrier spacing ∆f = 1

Tp
= B/N , where B is the signal bandwidth. The individual subcarrier

frequency is

fn =

(
fc −

B

2

)
+ n∆f, n = 0, 1, · · ·N − 1 (2.4)

where fc is the carrier frequency of the radar. In the presence of a reflecting target at the distance
R with the relative velocity of v, the relative Doppler shift is β = 2v

c . Hence, the induced Doppler
frequency at the n-th subcarrier is

fdn = fnβ =

(
fc +

n

Tp

)
2v

c
(2.5)

We assume that the fc ≫ B, i.e., the carrier frequency is much larger than the signal bandwidth,
hence, it is safe to assume that the Doppler frequency is fixed with respect to the subcarriers, i.e.,
the average Doppler frequency is

fd ≈ fc
2v

c
(2.6)
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thus applying the doppler shift on frequency fn → fn + fd and the time delay t → t − τ we have
the received signal

xm(t) =
N−1∑
n=0

am,ne
j2π(fn+fd)(t−τ)1m(t, TPRI, Tp) + wm(t) (2.7)

We rewrite (2.7) as
xm(t) = Asm(t− τ)ej2πfd(t−τ) + wm(t) (2.8)

where τ is the round trip time delay between the radar and target. A is the target response. Note
that in general, the reflection coefficientA is complex and may vary in different subcarrier channels.
For simplicity, A is assumed to be a deterministic constant in this work. wm(t) is the clutter and
measurement noise, following a zero mean complex Gaussian distribution. Inserting (2.1), (2.4) and
(2.6) to (2.8), we obtain

xm(t) = xsm(t)1m(t, TPRI, Tp) + wm(t) (2.9)

where the signal component is

xsm(t) = A
N−1∑
n=0

am,ne
j2π(n∆f(t−τ)−fcτ)ej2πfd(t−τ)ej2πfct

The corresponding baseband (complex envelope) signal is

ym(t) = xsm(t)1m(t, TPRI, Tp)e
−j2πfct + wm(t) (2.10)

=

N−1∑
n=0

Aam,ne
j2π(n∆f(t−τ)−fcτ)ej2πfd(t−τ)1m(t, TPRI, Tp) + wm(t) (2.11)

Note that, for an OFDM system, the sampling interval Ts is typically chosen such that ∆fTs =
1/N . Hence, the sampled version of ym(l) with (l = 0, · · · , N − 1) becomes

ym(l) = A

N−1∑
n=0

am,ne
j2π n

N
le−j2π(n∆f+fc)τ × ej2πfd(Ts(l+mQN)−τ) + wm(l) (2.12)

where Q = TPRI/Tp. Next, we define

Y s
m,n , Aam,ne

−j2π(n∆f+fc)τej2πfd(TsmQN) (2.13)

Using the definition of inverse DFT and Ts = 1
N∆f we can re-write (2.12) as

ym(l) = N{IDFT
[
Y s
m,n

]
}ej2π

fd
∆f

l
N e−j2πfdτ + wm(l) (2.14)

the term e
j2π

fd
∆f

l
N amounts to modulation in the time domain. Hence the DFT of ym(l) has a

corresponding frequency shift fd
∆f . Thus, applying DFT on (2.14) implies

Y ′
m,n = NY s

m,n− fd
∆f

e−j2πfdτ +Wm,n (2.15)

In radar estimation, we can assume that fd ≤ ∆f thus the only term that is influenced by modulation
is e−j2π(n∆f+fc)τ with n = n− fd

∆f and

Y ′
m,n = NAam,ne

−j2π((n− fd
∆f

)∆f+fc)τej2πfd(TsmQN) × e−j2πfdτ +Wm,n (2.16)
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which can be simplified as

Y ′
m,n = A′am,ne

j2π(mfdTsQN−n∆fτ) +Wm,n (2.17)

where A′ = ANe−j2πfcτ and is invariant term respect to m and n. Wm,n is the DFT of the noise
term wm(l). Dividing the known OFDM symbols am,n on both sides of (2.17), we obtain,

Ym,n = A′ej2π(mfdTsQN−n∆fτ) +W a
m,n (2.18)

where Ym,n =
Y ′
m,n

am,n
and W a

m,n =
Wm,n

am,n
.

2.3 Minimum Nonlinear Least-Squares Estimator

We let A′ = bejϕA be the target response with b and ϕA being the magnitude and phase of target
response. The parameter vector of interest is

θ = [b, ϕA, fd, τ ] (2.19)

From the signal model (2.18), the nonlinear least-squares error function is,

Ln(Y ;θ) =
M−1∑
m=0

N−1∑
n=0

|W a
m,n|2 (2.20)

=

M−1∑
m=0

N−1∑
n=0

|Ym,n − bejϕAej2π(mfdTsQN−n∆fτ)|2

where M is the number of pulses in the coherent processing interval. Hence, we obtain

Ln(Y ;θ) =

M−1∑
m=0

N−1∑
n=0

(
|Ym,n|2 + b2 − 2ℜ{Y ∗

m,nbe
jϕAej2π(mfdTsQN−n∆fτ)}

)
(2.21)

The parameters θ can be determined by minimizing the error function, i.e.,

find θ̂ = argmin
θ

Ln(Y ;θ) (2.22)

Since there are four parameters in the vector θ, a sequence of optimization steps are taken. We start
by taking partial derivative of the error function with respect to the unknown phase ϕA, which yields

∂Ln(Y ;θ)

∂ϕA
= 2b

M−1∑
m=0

N−1∑
n=0

(
2ℜ

{
− jYm,nbe

−jϕAe−j2π(mfdTsQN−n∆fτ)
})

= 0 (2.23)

Note that the 2-D discrete time Fourier transform of Ym,n is

Z(fd, τ) =

M−1∑
m=0

(N−1∑
n=0

Ym,ne
j2πn∆fτ

)
e−j2πmfdTsQN (2.24)

Inserting (2.24) in (2.23) we obtain

ℜ
{
− jbe−jϕAZ(fd, τ)

}
= 0 (2.25)
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Since b and |Z(fd, τ)| are positive real values, only the real component of the phase term must be
zero. Hence we have

cos
(π
2
+ ϕA − ∠Z(fd, τ)

)
= 0 (2.26)

This is a simple trigonometric equation and the solution is

ϕ̂A = kπ + ∠Z(fd, τ), (2.27)

where k is an integer. Using this estimate (2.27) in the error function (2.21) and ignoring the terms
independent of b, we obtain

Ln(Y ; ϕ̂A, b, fd, τ) = 2bℜ
{
e−∠Z(fd,τ)Z(fd, τ)

}
−MNb2 (2.28)

which simplifies to
Ln(Y ; ϕ̂A, b, fd, τ) = 2b|Z(fd, τ)| −MNb2 (2.29)

By equating the partial derivative with respect to b to zero yields

b̂ =
|Z(fd, τ)|
MN

(2.30)

Inserting the estimate (2.30) in (2.29) we obtain

Ln(Y ; ϕ̂A, b̂, fd, τ) =
|Z(fd, τ)|2

MN
(2.31)

which is a scaled the periodogram of the 2D-DTFT in (2.24). Hence, we obtain the final optimiza-
tion problem for unknown delay and doppler frequency parameters as

find f̂d, τ̂ = argmax
fd,τ

|Z(fd, τ)|2

MN
(2.32)

The solution to (2.32) can be determined by finding the peak of un-windowed 2D periodogram of the
signal Ym,n. This estimation can be accomplished by a two-dimensional search [Rife and Boorstyn, 1974].

2.4 Cramer-Rao Lower Bounds

Note that if Wm,n in (2.18) is a Gaussian random process, θ̂ is a large sample realization of
the maximum-likelihood estimator of θ. Since the maximum-likelihood estimator is expected to
achieve the Cramer-Rao Low Bound (CRLB) as M or N increases, it follows that under the Gaus-
sian assumption no other estimator could perform better in large samples than θ̂. In this section, we
derive the Cramer-Rao lower bound of θ̂. The probability model of the measurements Y = {Ym,n}
is

P (Y |θ) =
M−1∏
m=0

N−1∏
n=0

|am,n|2

πσ2w
exp

(
−|am,n|2

σ2w
|Ym,n − bejϕAej2π(mfdTsQN−n∆fτ)|2 |2

)
(2.33)

The log-likelihood function is

l(Y |θ) = −
M−1∑
m=0

N−1∑
n=0

(
|Y ′

m,n|2 + b2|am,n|2 − 2ℜ{Y ∗
m,nbe

jϕAam,ne
j2π(mfdTsQN−n∆fτ)}

)
(2.34)
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The Cramer-Rao bounds for the parameter estimates θ̂i are given by the diagonal elements of inverse
of the 4× 4 Fisher information matrix J [Kay, 1993],

Var(θ̂i) ≥ [J−1]ii (2.35)

where θi are the four scalar parameters in the vector θ in (2.19) with i = 1, 2, 3, 4.
Due to space limitations, a detailed derivation of the elements are omitted in this work. We only

present the final results here. The determinant of Fisher information matrix J is

det(J) =
256b6

σ8w
(Maπ2TsQN∆f)2(MQM − P 2

M )(aQN − P 2
N ) (2.36)

where PM =
∑M−1

m=0 m = M(M − 1)/2, QM =
∑M−1

m=0 m
2 = M(M − 1)(2M − 1)/6, QN =∑N−1

n=0 n
2|am,n|2 and PN =

∑N−1
n=0 n|am,n|2. The Cramer-Rao low bound on the estimate of b is

the first element along the diagonal of J−1 given by

CRBb =
1

det(J)
(MQM − P 2

M )(QN − P 2
N )

128b6

σ6w

Maπ4(TsQN)2(∆f)2 (2.37)

The diagonal elements of the J−1 are evaluated using the adjoint method. Next, using (2.36) and
upon simplification we obtain CRBb = σ2

w
2Ma . The CRLB on ϕA is the second element along the

diagonal of J−1 and is obtained as,

CRBϕA
=
σ2w
b2

MaQMQN − P 2
MP

2
N

2Ma(MQM − P 2
M )(aQN − P 2

N )
(2.38)

The CRLB on fd is the third element along the diagonal of J−1 given by,

CRBfd =
1

det(J)

8b6

σ6w

M3a

b2
(2π∆f)2(aQN − P 2

N ) (2.39)

Again upon simplification we obtain

CRBfd =
Mσ2w

8ab2π2(TsQN)2(MQM − P 2
M )

(2.40)

Finally, the CRLB on τ is the forth element along the diagonal of J−1 defined as,

CRBτ =
1

det(J)

8b6

σ6w

Ma3

b2
4π2(TsQN)2(MQM − P 2

M ) (2.41)

Hence, upon simplification we obtain

CRBτ =
aσ2

2(aQN − P 2
N )b2M(2π∆f)2

(2.42)
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2.5 Weighted OFDM Symbol Design

We use the classic Cramer-Rao lower bound (CRLB) to evaluate the performance of the nonlinear
least-squares estimation. Eqn. (2.42) reveals that the CRLB on time delay estimate τ̂ is determined
by the factor σ2

w
b2

, a term related to SNR, the number of pulses M , the frequency separation ∆f
and the factor a

aQN−P 2
N

which depends on OFDM symbol amplitudes |am,n|. Similarly, Eqn. (2.40)

shows that CRLB on the Doppler frequency estimate f̂d depends on the SNR value ab2

σ2
w

, the constant
M

MQM−P 2
M

and the sampled length of the pulse repetition interval TsQN , but independent of the

spectral shape of OFDM symbols |am,n|.
By the definition of CRLB, we know that the determinant of the Fisher information matrix

det(J) in (2.36) is the common denominator for each of the CRLBs given in (2.37), (2.38), (2.40)
and (2.42). The aim for weighted OFDM is to design OFDM symbols to minimize the inverse of
det(J) subject to proper constraints, i.e.,

find am,n = argmin
am,n

1

aQN − P 2
N

(2.43)

s.t


(C1) min(|am,n|) > η0max(|am,n|)
(C2) PAPR < η1
(C3)

∑N−1
n=0 |am,n|2 ≤ a

(2.44)

Condition (C1) is to impose a constraint on the lower bound of the cost function 1
aQN−P 2

N
by

min(|am,n|)
max(|am,n|)

< η0 ≤ 1 (2.45)

The purpose of this constraint is to avoid bandwidth loss. Otherwise, OFDM symbols am,n would
allocate zero power in most of sub-bands n, causing bandwidth loss in the transmission signal. As
a result, the range resolution could be severely degraded. Condition (C2) is to set an upper bound
η1 ≪ N on the peak to average power ratio (PAPR) defined by

PAPR = a−1 max
0<t<Tp

|sm(t)|2 (2.46)

because a high PAPR imposes severe burden on the transmitter due to limited amplification range of
the RF amplifier. For instance, when phase shift keying (PSK) is used, the upper bound on PAPR is
N [Ochiai and Imai, 2001]. Finally, Condition (C3) is the total power constraint. The optimization
problem defined in (2.43) and (2.44) is solved numerically using convex optimization by the active-
set constrained nonlinear method [Han, 1977].

2.6 Simulation Results

The estimation performance of the proposed weighted OFDM (WOFDM) is compared with the
QPSK based constant envelope OFDM (CE-OFDM) scheme. For QPSK, we choose |am,n|2 =
1/N . The phase of the OFDM symbols am,n is a uniformly distributed random variable. Under
this modulation scheme, the cost function aQN − P 2

N = N2−1
12 is a constant. The CRLB of the

Doppler in (2.40) is independent of modulation. The CRLB of delay estimate for CE-OFDM is also
independent of symbol amplitude |am,n| and is given by

CRBτ = 3σ2/
(
2(N2 − 1)b2M(π∆f)2

)
(2.47)
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For WOFDM, both amplitude and phase of the weights am,n are derived from the optimization
problem (2.43) and (2.44). In the simulations, the bandwidth B = 10 MHz, the number of sub-
carriers is N = 128, and the carrier frequency is fc = 2 GHz. The frequency separation is ∆f =
781.25 kHz. The signal energy is normalized (i.e., a = 1) and the SNR varies from 1 ∼ 13 dB. The
pulse repetition interval is TPRI = NTp. The resolution of the Doppler spectrum is 1/(TsQNM).
The delay spectrum has a resolution of TPRI/N = Tp.

The true values of parameters of a simulated moving target are given as follows. The Doppler
frequency is fd = .5/TPRI , time delay is τ = TPRI/2 and the number of pulses is M = 50. The
optimization parameters are set as η0 = 0.2 and η1 = 3. The estimates f̂d and τ̂ are obtained by the
nonlinear least-squares estimator formulation in (2.32). By the active-set constraint optimization
method, we calculate the weights am,n numerically [Han, 1977]. Table 2.1 presents the statistics of

Table 2.1: Variations of PAPR Values
Modulation CE-OFDM WOFDM

average PAPR 5.643 3.004
variance 1.348 0.016

PAPR from the CE-OFDM vs. WOFDM. The WOFDM method yields a more stable (i.e., smaller
variance) and lower PAPR value compared to the CE-OFDM method.

Fig. 3.1 depicts the theoretical CRLB and the numerical values for the delay and Doppler esti-
mates. For the delay estimate in Fig. 3.1(a), the plots show that WOFDM modulation given in (2.42)
achieves a smaller CRLB than CE-OFDM given in (2.47). This is because by varying the magni-
tudes of the OFDM symbols, we reduce the value of the max(|sm(t)|), i.e., bringing it closer to the
mean value of (|sm(t)|). Hence we achieve a higher value for det(J), thus leading to a lower CRLB
for delay estimate. As expected, for Doppler estimate, the CRLBs are the same for the two mod-
ulation schemes. Note that the variance plots of the parameter estimates by the WOFDM method
closely follows the variance plots of CE-OFDM only after the SNR goes above 8 dB. This phe-
nomenon is often called threshold effect in nonlinear estimation problem [Rife and Boorstyn, 1974].
It means at low SNR, there is usually a range of SNR in which the mean-squared error (MSE) rises
rapidly as SNR decreases. In other words, only at high SNR, the computed SNR follow the CRLB
closely, as shown in Fig. 3.1. Fig. 3.2 represents the improvements in CRLB using the WOFDM
compared to the CE-OFDM with respect to different values of η0 and η1. The plots show the trade-
off between the CRB, PAPR and bandwidth preservation, i.e., it is not possible to achieve low CRB
and low PAPR simultaneously.

2.7 Conclusion

A weighted OFDM scheme is proposed which provides a lower PAPR compared to the QPSK based
constant envelope OFDM scheme. Theoretical analysis and numerical simulation demonstrate that
the CRLB bound for Doppler (velocity) estimate does not change with modulation, however, the
CRLB of delay (range) estimate is improved with the weighted symbols by WOFDM. The pro-
posed WOFDM scheme provides a promising means to achieve co-existence between radar and
communications via a reconfigurable RF platform.
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Figure 2.1: Computed variance and CRLB for CE-OFDM vs. WOFDM modulation. (a) Delay
estimate τ̂ . (b) Doppler frequency estimate f̂d
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Chapter 3

Waveform Encoding for Nonlinear
Electromagnetic Tomographic Imaging

3.1 Introduction

Electromagnetic (EM) tomographic imaging is an inverse scattering problem which has a wide
range of applications in medical imaging, geophysical exploration, nondestructive testing, and tar-
get identifications [Chew and Wang, 1990, Franchois and Pichot, 1997, Isernia et al., 1997]. In EM
tomographic imaging, source antennas transmit EM signals into a medium under test and receive
scattering signals. Based on the underlying Maxwell’s equations, inversion methods are employed
to reconstruct a spatial distribution of material parameters such as the dielectric permittivity and/or
magnetic permeability of the target and the surrounding medium, thus turning recorded scattering
data into images [Fhager et al., 2006, Liu et al., 2002].

Mathematically, electromagnetic tomographic imaging is an inverse problem, which can be
written as

yj = Aj(p(r); sj) + ηj , j = 1, · · · , Q (3.1)

The goal is to infer model parameters (i.e., material property values p(r), r ∈ Ω) from the ob-
served data (i.e., measurement yj ∈ ∂Ω× [0, T ]) in response to the j-th excitation source sj based
upon a Maxwell wave model. Ω denotes the imaging field, T is the integration time of the signals
measured at the receivers positioned at the boundary ∂Ω of the imaging field. Q is the number
of excitation sources. Aj(·) is the nonlinear operator determined by the wave model and ηj is the
noise or disturbance term. The image to be reconstructed is a spatial distribution of the parame-
ter p. The dimension of p, determined by the discretization of the image field Ω, is often much
larger than the dimension |∂Ω| (i.e., the number of receivers) for data yj . Hence, the full-wave
inverse problem (3.1) is considered ill-posed, often requiring regularization of the inverse problem.
For example, the well known compressive sensing method would impose a sparsity constraint on
p [Candes and Tao, 2006, Lustig et al., 2008], thus effectively reducing the dimensionality of the
solution space for p.

The imaging problem (3.1) we consider is more challenging in that it involves solving a non-
linear full wave inverse problem with active excitation sources. Classic approaches to solving (3.1)
include the least squares optimization method [He et al., 1997, Jia et al., 2002] or the iterative New-
ton’s method [Dorn et al., 1999]. In both cases, iterative computational techniques are employed.

The cost of computation depends on the size of the data volumes (i.e., the number of transmis-
sion sources and the number of receivers) and on the discretization of the wave model. The com-
plexity of computing gradient and Newton updates - aside from issues with non-convergence and
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non-uniqueness - become the major impediment withstanding successful application of full wave in-
version to industry-size data volumes, for example, large scale seismic imaging [Krebs et al., 2009]
and high resolution medical imaging [Fhager et al., 2006].

In this work, we will address this issue by means of dimensionality reduction through multi-
ple source waveform encoding. Typical full wave tomographic imaging operates in a single-input
multiple-output (SIMO) configuration. An image is reconstructed from measured data in response
to a single excitation antenna source. The reconstruction process continues till all the sources are
excited. For large-scale imaging such as seismic exploration, the number of EM sources is very
large. Not only the computational cost is high, the operational expenditures of each data collection
process is also significant. In this case, multiple source excitation becomes appealing. For exam-
ple, in seismic imaging, multiple sources are excited simultaneously to form a so-called supershot
to probe the imaging field [Godwin and Sava, ], which means the imaging configuration becomes
multiple-input multiple-output (MIMO).

The recorded data are processed to form an image. The image is updated when new measure-
ment data is available. This procedure is repeated until the image converges or a pre-determined
stopping criterion is met. However, multiple wave simultaneous excitation induces cross-talk noise
due to wave interference, which, if not treated, will cause image artifacts. Therefore, signal pro-
cessing techniques such as waveform encoding are needed to mitigate cross-talk noise in the image
in order to achieve high quality imaging while reducing the computational complexity.

The contribution of this work is threefold. First, we develop three different waveform encoding
techniques, i.e., random phase encoding, waveform delay encoding, and uniform weight encoding
for the full-wave EM imaging problem. We show that the random phase encoding method results
in constant-envelop waveforms and produces the best performance in terms of convergence. Second,
this work extends our early work on microwave imaging in a SIMO configuration [Dong et al., 2012].
We show that using simultaneous sources made of superposition of encoded sources is able to ac-
celerate iterative algorithms for electromagnetic full-wave inversion, thus demonstrating the effec-
tiveness of waveform encoding, a common signal processing technique, to improve computational
efficiency of classic nonlinear inverse problems. Third, although waveform encoding techniques
have been studied for acoustical wave imaging [Krebs et al., 2009] and our early work on MIMO
ultrasonic imaging [Dong and Jin, 2013, Dong et al., 2014], there is still a lack of research for EM
full-wave imaging in applications where the use of EM wave energy is critical. In this work, we de-
velop iterative algorithms that solve time domain Maxwell’s equations with coupled electric fields
and magnetic fields using waveform encoded excitations and demonstrate faster convergence com-
pared with our prior SIMO imaging algorithm in [Dong et al., 2012].

3.2 MIMO Imaging Problem Formulation

Consider the time dependent Maxwell’s equations in an isotropic medium [Chew, 1994]

ϵ(r)
∂E⃗(r, t)

∂t
− ▽× H⃗(r, t) + σ(r)E⃗(r, t)=−J⃗(r, t) (3.2)

µ(r)
∂H⃗(r, t)

∂t
+ ▽× E⃗(r, t)=0 (3.3)

where the quantities E⃗(r, t) = (Ex, Ey, Ez, t) and H⃗(r, t) = (Hx,Hy,Hz, t) are the electric and
magnetic field intensities defined on Ω × [0, T ], where r ∈ Ω is the imaging region. The material
parameters including electrical permittivity ϵ(r), magnetic permeability µ(r) and conductivity σ(r)
are independent of time. The quantity J⃗(r, t) = (Jx, Jy, Jz, t) is the electric current density of an
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Figure 3.1: 2D MIMO tomographic imaging geometry. At the m-th transmission, the m-th group
of multiple current sources are excited to emit TM waves to interrogate the imaging field. Scattered
signals are received by all the sensors.

external charge and is considered as the external source. The initial conditions are E⃗(r, 0) = 0 and
H⃗(r, 0) = 0.

3.2.1 2D EM tomographic imaging problem

We consider a 2-D inverse scattering problem where only the transverse magnetic (TM) waves are
studied. In this case, Ez ̸= 0,Hz = 0. Furthermore, for the sake of simplicity, we assume that only
the Ez component is recorded, i.e., we let Ex = Ey = 0. By omitting the space parameter r for the
moment, the Maxwell’s equations in (3.2) and (3.3) become

∂Ez

∂t
(t)=−σ

ϵ
Ez(t) +

1

ϵ

(
∂Hy

∂x
+
∂Hx

∂y

)
(t)− 1

ϵ
Jz(t) (3.4)

∂Hy

∂t
(t)=

1

µ

∂Ez

∂x
(t), and

∂Hx

∂t
(t) = − 1

µ

∂Ez

∂y
(t) (3.5)

where Jz(t) is the current source polarized in the z-direction emitted from the transmit antennas.
Specifically, in the tomographic imaging setup shown in Fig. 3.1, the excitation signal source can
be expressed by

Jz,j(r, t) = sj(t)δ(r− rtj), j = 1, 2, · · · , Q (3.6)

where rtj is the position of the j-th transmit antenna. Q is the total number of transmitters. sj(t)
is the excitation signal emitted by the j-th transmitter. δ(r) is the Dirac delta function. The short
pulsed signal generated by a source illuminates the imaging field and the unknown target. The
transient field data are collected at the receiver positions rrj . Furthermore, we assume in this work
that the transmitter and the receiver positions are the same, i.e., rrj = rtj .

Next we combine Lm individual excitation sources at them-th transmission, leading to them-th
“supershot”

Jz,m(rt, t) =

Lm∑
j=1

Jz,j(r
t
j , t), m = 1, · · ·M (3.7)

which is the combined Lm ≥ 1 sources. Note that the total number of sources remains unchanged,
i.e., Q =

∑M
m=1 Lm. When Lm = L is a constant, then M = Q/L. It is easy to see when Lm = 1,

the MIMO configuration reduces to the SIMO configuration.
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Next, let the symbol p = [ϵ σ µ]T denote the parameter vector which stands for the material
properties of the internal structure of the medium (or objects) to be reconstructed. The imaging
problem is to seek the solution of the nonlinear equations

Ẽz,m(rrj , t) = Ez,m(p; rrj , t) + ηm (3.8)

where m = 1, · · · ,M is the index for transmission sources and j = 1, · · · , Q is the index for
receivers. Ẽz,m(rrj , t) is the measured z-component of the electric field at the receiver antenna
position rrj . Ez,m(p; rrj , t) is the calculated electric field for the parameter p at the j-th receiver
position rrj in response to them-th excitation source Jz,m(rt, t). The calculation of Ez,m(p; rrj , t) is
based upon the underlying Maxwell’s equations (3.4) and (3.5). Next, organizing all the measured
electrical field data into a space-time matrix with respect to (rr, t)

ẽm = [Ẽz,m(rr1, t), Ẽz,m(rr2, t), · · · , Ẽz,m(rrQ, t)]
T (3.9)

Accordingly, the imaging problem (3.8) can be written as a system of nonlinear operator equations

ẽm = Am(p; Jz,m(rt, t)) + ηm (3.10)

where the j-th component [Am(p; Jz,m(rt, t))]j , Ez,m(p; rrj , t) is the calculated electrical field at
the j-th receiver antenna. ηm is the additive noise or disturbance. The problem of interest is to find
out the solution p(r) for (3.10) over the imaging region r ∈ Ω given proper initial condition and
boundary conditions and waveform encoded excitation signals Jz,m(rt, t).

3.2.2 Inversion algorithm by adjoint fields

We use iterative Newton’s method to calculate the material property value p. Let p(0) be the initial
approximation, the update equation is given by

pk+1 = pk + γδpk (3.11)

where γ is a relaxation factor. δpk is the increment value at k-th iteration. We employ the adjoint
method to calculate δpk [Dong et al., 2012], which takes the form of

δpk =
(
A′

m(pk, Jz,m(rt, t))
)∗

dk, m = k mod M (3.12)

where d(k) , ẽm − e
(k)
m |∂Ω×[0,T ] is the difference signal. e(k)m |∂Ω×[0,T ] = Am(p(k), Jz,m(rt, t)) is

the calculated electric field signal value at the boundary at the k-th iteration in response to the m-th
transmission. Here the symbol A′

m(·) stands for a locally uniformly bounded Fréchet derivative of
Am(·) and A′

m(·)∗ is the adjoint operator of A′
m(·) [Dorn et al., 1999, Dong and Jin, 2013]. The

symbol mod stands for the modulo operation.
The outline of the algorithm is given in Table 3.1. The inversion algorithm involves four

steps. Step 1 solves a forward problem, i.e., from k-th value pk, we calculate the projected value
Am(pk; Jz,m(rt, t)) at the boundary of the imaging field ∂Ω, which yields ekm. Step 2 calcu-
lates the difference signal dk. Step 3 is the inversion algorithm that calculates the adjoint fields(
A′

m(pk; Jz,m(rt, t))
)∗. Step 4 computes the update and evaluates the stopping criterion. From the

operator point of view, we can show from (3.7) that Am(p; Jz,m(rt, t)) =
∑Lm

j=1Aj(p; Jz,j(r
t
j , t)).

We omit the proof due to space limitations.
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Table 3.1: Full Wave Inversion Algorithm by Adjoint Fields

Initialize p← p0

Iteration while ∥pk+1 − pk∥2 ≥ ϵ do

1. ekm = Am(pk) // forward problem

2. dk , ẽm − ekm // difference signal

3. δpk =
(
A′

m(pk)
)∗

dk // adjoint fields

4. pk+1 = pk + γδpk // update

end

3.3 Waveform Encoding in EM Imaging

MIMO waveform signaling is well studied in signal processing community to improve spatial diver-
sity for better estimation and detection [Jin et al., 2010]. In this work, the goal of MIMO signaling
is to improve computational efficiency of nonlinear imaging by accelerating the convergence of
the iterative algorithm while achieving high resolution images. We consider a Gaussian modulated
pulse as the basic excitation signal, which takes the form of sj(t) = s(t) = cos(2πfct)e

−2π2t2/τ2p

where τp is the pulse width. Next, we examine three waveform encoding techniques for imaging.

3.3.1 Waveform encoding design

(1) Random phase encoding. The method applies a random phase termwj = eiθj to each excitation
signal sj(t), where i denotes the imaginary unit and θj = Uniform(0, 2π). In particular, we consider
binary phase shift keying scheme where only {eiπ = −1} and {ei0 = +1} are chosen randomly
following a Bernoulli distribution. Hence, the aggregated excitation signal takes the form of

J (1)
z,m(rt, t) =

Lm∑
j=1

wjsj(t)δ(r
t − rtj), m = 1, · · ·M (3.13)

Our simulation studies reveal that this method reduces cross-talks while achieving accelerated con-
vergence.
(2) Time-delays encoding. To reduce the cross-talks, a fixed time delay τj is applied to the Lm

sources at the m-th transmission.

J (2)
z,m(rt, t) =

Lm∑
j=1

sj(t− τj)δ(rt − rtj), m = 1, · · ·M (3.14)

where τj is the relative delay for the j-th source. A good choice of time delay is the pulse width,
i.e., τj = τp, for Gaussian modulated pulses.
(3) Uniform weight encoding. In this case, Lm > 1 excitation signals are emitted simultaneously
from Lm antennas, the aggregated electric current density becomes

J (1)
z,m(rt, t) =

Lm∑
j=1

sj(t)δ(r
t − rtj), m = 1, · · ·M (3.15)
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However, the mutual interference between the excitation signals may cause cross-talks, which de-
grades the image quality.

3.3.2 Impact of excitation sources

To examine the impact of the excitation sources on the solution of the imaging problem, we re-write
the Maxwell’s equation as a second order wave equation. Starting from the Farday’s Law in the
vector form, ▽×E⃗ = −µ∂H⃗

∂t , and take the curl of both sides, we obtain ▽×▽×E⃗ = −µ ∂
∂t(▽×H⃗).

Note that ▽× ▽× E⃗ = −▽2E⃗, and using (3.2), we obtain

▽2E⃗ = µϵ
∂2E⃗

∂t2
+ µ

∂

∂t

(
J⃗ + σE⃗

)
(3.16)

Next, consider the TM mode where only Ez is to be reconstructed, we can re-write (3.16) as a
second-order scalar wave equation

∂2Ez

∂t2
− c2∂

2Ez

∂z2
= f(z, t) (3.17)

where the forcing term in (3.17), f(z, t) = 1
ϵ
∂
∂t (Jz + σEz), depends on the excitation source Jz .

More importantly, by the theory of wave equation [Evans, 2010], the solution to inhomogeneous
wave equation (3.17) can be written as, Ez = Ez,g + Ez,p, the sum of the general solution Ez,g of
the homogeneous wave equation (i.e., (3.17) when setting f(z, t) = 0) and the particular solution
Ez,p, [Evans, 2010], where

Ez,p =

√
µϵ

2

∫ t

0

∫ z+(t−t′)/
√
µϵ

z−(t−t′)/
√
µϵ

f(z, t)dzdt (3.18)

Eqn. (3.18) reveals that the electric field computed in the forward model depends on the excitation
source, which also affects the reconstruction procedure for tomographic imaging. However, an exact
relationship between the excitation sources Jz and the quality of imaging ϵ(r) by iterative algorithm
(i.e., convergence speed and reconstruction error) is implicit. Here we rely on numerical means to
study how source encoding schemes effect the quality of tomographic imaging.

3.4 Numerical Experiments

In this section, we conduct numerical experiments to test and verify our results. The test example is
shown in Fig. 3.1. The object to be reconstructed is a two-layer dish-like objects. The inner object
is of diameter of 6 mm with a dielectric constant ϵ = 1.2ϵ0 and the outer object is of diameter of
12 mm with a dielectric constant ϵ = 1.5ϵ0. ϵ0 is the vacuum permittivity 8.85× 10−12 F/m. The
permittivity value for the surrounding medium is ϵ0. In the simulation, only the permittivity ϵ(r) is
to be reconstructed. The conductivity value is set to zero σ = 0, and the magnetic permeability is
chosen to be a constant µ = µ0 = 4π × 107H/m. The antennas are placed on the four sides of the
imaging region. There are a total of 90 co-located transmitters/receivers. The computational area is
a square region having sides of length 12 cm and is discretized to 40 by 40 grids. In the computation,
we use the MUR absorbing boundary condition [Mur, 1981]. 5% of random disturbance as ηm is
introduced to the simulated electric wavefield signals. To evaluate the performance of the iterative
algorithms with different encoding schemes, we calculate the relative error

β = ∥ϵ̂(k) − ϵtrue∥2/∥ϵ̂(0) − ϵtrue∥2 (3.19)
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Figure 3.2: Reconstructed images of dielectric value ϵ. Top: random phase encoding. Middle:
waveform delay encoding. Bottom: uniform weight encoding.

where ϵ̂(0) and ϵ̂(k) is the initial and final value of the reconstructed image, respectively. ϵtrue is the
true value of the dielectric constant of the target and the medium.

Simulations are conducted using Lm = 7 excitation sources at each transmission under the
three different waveform encoding schemes. Fig. 3.2 depicts three reconstructed images under
the random phase encoding (3.13), waveform delay encoding (3.14), and uniform encoding (3.15).
Fig. 3.3 depicts the corresponding convergence history (i.e., relative residual error β vs. the CPU
run time in seconds) of the three iterative algorithms. The conventional single source excitation
scheme is also included. Among the three encoding schemes, the random phase encoding achieves
fastest convergence and smallest imaging error, compared with the uniform waveform encoding
and the waveform delay encoding schemes. As expected, the conventional SIMO imaging yields
the slowest convergence and lowest image quality at the 450 seconds compared with other three
encoding techniques, as shown in Fig. 3.3.

3.5 Conclusions and Discussions

We developed waveform encoding techniques for a nonlinear electromagnetic tomographic imag-
ing problem in the time domain. Proper encoding techniques such as random phase encoding yields
fast convergence of iterative reconstruction while achieving high quality images with reduced data
volumes, thus demonstrating the power of signal processing techniques for improving significantly
the computational efficiency for solving nonlinear inverse problems. We note that randomized re-
construction for nonlinear imaging when the reconstruction step is optimized with regard to each
random weights remains an open research problem. The theory of compressive sensing for linear
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Figure 3.3: Convergence plots of iterative algorithms: SIMO vs. three MIMO waveform encoding
schemes

inverse problems offers interesting insights and could lead to, combined with waveform encoding
techniques, new fast and efficient EM full wave tomographic imaging algorithms for large scale
imaging applications.
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